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Ascertainment-Adjusted Parameter Estimates Revisited
Michael P. Epstein, Xihong Lin, and Michael Boehnke
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Ascertainment-adjusted parameter estimates from a genetic analysis are typically assumed to reflect the parameter
values in the original population from which the ascertained data were collected. Burton et al. (2000) recently
showed that, given unmodeled parameter heterogeneity, the standard ascertainment adjustment leads to biased
parameter estimates of the population-based values. This finding has important implications in complex genetic
studies, because of the potential existence of unmodeled genetic parameter heterogeneity. The authors further stated
the important point that, given unmodeled heterogeneity, the ascertainment-adjusted parameter estimates reflect
the true parameter values in the ascertained subpopulation. They illustrated these statements with two examples.
By revisiting these examples, we demonstrate that if the ascertainment scheme and the nature of the data can be
correctly modeled, then an ascertainment-adjusted analysis returns population-based parameter estimates. We further
demonstrate that if the ascertainment scheme and data cannot be modeled properly, then the resulting ascertainment-
adjusted analysis produces parameter estimates that generally do not reflect the true values in either the original

population or the ascertained subpopulation.

Introduction

Adjusting for nonrandom sampling, or ascertainment,
has been an important topic in the genetics literature for
many years (e.g., Weinberg 1912; Apert 1914; Fisher
1934; Haldane 1938; Morton 1959; Cannings and
Thompson 1977; Elston and Sobel 1979; Ewens and
Shute 19864, 1986b; Vieland and Hodge 1995; de An-
drade and Amos 2000). Ascertainment issues arise often
in genetic studies because of the frequent use of non-
random sampling, particularly when the trait of interest
is rare. For a family-based genetic study of a rare disease,
a common ascertainment sampling procedure is to col-
lect families with at least one or at least two affected
members. Ascertainment usually results in oversampling
subjects from the affected subset of the original popu-
lation and undersampling subjects from the comple-
mentary set. Failure to account for this ascertainment
effect may lead to biased estimates of the parameters of
interest.

After proper adjustment for ascertainment has been
made, it is generally assumed that the resulting analysis
will yield parameter estimates that reflect the values of
the parameters in the original population from which
the ascertained data were collected. Recently, Burton et
al. (2000) stated that, in the presence of unmodeled
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parameter heterogeneity, a standard ascertainment-ad-
justed analysis returns parameter estimates that are bi-
ased with respect to the population-based values. This
finding has important implications in genetic studies
because of the probable existence of unmodeled param-
eter heterogeneity in a complex genetic trait. The au-
thors’ finding implies that it can be difficult, if not
impossible, to interpret the results of an ascertainment-
adjusted genetic analysis with respect to the original
population. This raises the question of whether it is
futile even to attempt an ascertainment-adjusted anal-
ysis in a genetic study.

Burton et al. (2000) went on to state the important
point that, given unmodeled heterogeneity, ascertain-
ment-adjusted parameter estimates reflect the true pa-
rameter values in the ascertained subpopulation. We
interpret this statement to mean that, in the presence of
unmodeled heterogeneity, ascertainment-adjusted pa-
rameter estimates converge to the true parameter values
in the ascertained subpopulation. Burton and colleagues
illustrated their statements with two examples.

In the present article, we make two points regarding
ascertainment-adjusted analyses in the presence of latent
parameter heterogeneity. First, we demonstrate that the
proper construction of the ascertainment-adjusted like-
lihood (which properly models both the ascertainment
mechanism and the true nature of the data) yields pop-
ulation-based parameter estimates. Second, we dem-
onstrate that if one is unable to properly construct the
correct ascertainment-adjusted likelihood (as Burton et
al. [2000] pointed out, this can occur), then resulting
parameter estimates need not reflect the true values in
either the original population or the ascertained sub-
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population. We support our points by revisiting the two
examples of Burton et al. (2000). For each example, we
describe the authors’ ascertainment-adjusted methods.
We then describe ascertainment-adjustment procedures
that yield parameter estimates that (when identifiable)
reflect the true parameter values in the original popu-
lation. Finally, we show that using the standard ascer-
tainment-adjusted analyses in the two examples pro-
duce parameter estimates that do not reflect the true
parameter values in the ascertained subpopulation.

Material and Methods

Assumptions and Definitions

Suppose our original population consists of a set of
n independent sibships. Let 72,4 denote the total number
of sibships ascertained from the original population and
let J; denote the number of siblings in ascertained sibship
i. Let D, represent an indicator variable for the presence
or absence of the disease in the jth sibling in the ith
sibship, where D, = 1 if the disease is present and
D, = 0 otherwise.

General Form of the Ascertainment-Adjusted
Likelihood

In general, one constructs the standard ascertainment-
adjusted likelihood by dividing the unconditional like-
lihood by the probability of the ascertainment event. We
let ASC; denote the ascertainment event for sibship i. For
example, ASC, could represent ascertainment based on
the presence of at least one affected sibling, such that

Ji
ASC, = {21),,21} .
j=1

The ascertainment-adjusted likelihood then takes the
form

nASC

LD |ASC) =] L(D,,D,, ..., ASC)
i=1

MASC L (Dil ,D,-z, aDi],)

_{f "

-1 L(ASC)

Example 1: Estimating Disease Prevalence

In their first example, Burton et al. (2000) were in-
terested in estimating disease prevalence under the as-
sumption of a population of 7 sibships, each of size J.
They distributed the sibships into one of K discrete
strata, each with a different disease prevalence p,
(k =1,...,K). The affection status of each sibling de-
pended only on the sibship’s stratum-specific disease
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prevalence. Burton and colleagues collected an ascer-
tained subpopulation by ascertaining all 7,4, sibships
that included at least one affected sibling. Let N** and
N denote the number of sibships from stratum k in
the original population and ascertained subpopulation,
respectively. By definition,

and

M

— (k)
Nypsc = : Nise -

1

Burton et al. (2000) estimated the overall disease prev-
alence p as the average of the prevalence of each stratum
weighted by its stratum size, which is asymptotically
equivalent to being weighted by the probability of stra-
tum membership. We denote the overall disease preva-
lence p in the original population by p, and that in the
ascertained subpopulation by p,. By definition, p; is es-
timated by

K
3 pN"
A k=1
pP - n b
whereas p, is estimated by
s k
3 peNise
P
pa=
Musc

Burton et al. (2000) assumed that stratum member-
ship was unobservable and estimated p by combining
the ascertained subpopulation of each of the K strata
into one overall subpopulation; they then analyzed the
resulting sample, using the classical approaches for a
homogeneous sample. Because of prevalence heteroge-
neity across strata, sibships in the higher-risk strata were
more likely to be ascertained than were sibships in the
lower-risk strata. This leads to differences in the distri-
bution of the values of the overall prevalence between
the ascertained subpopulation (p,) and the original pop-
ulation (pp).

Burton et al. (2000) assumed that, for a given sibship,
D,;,D,,...,D; were independent Bernoulli random var-
iables with disease probability p. They then constructed
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the ascertainment-adjusted likelihood across the 7,4 as-
certained sibships as

nase L(Dyy,Dysy v ,Dy) nasc 1D i1 —py- -1
: ] =1 — 1 —
i=1 L(E D,'/' = 1) i=1 1 (1 p)
j=1
J o »
1" =p)"
=

Y 2
i-aoppe 2

where 7, represents the number of (ascertained) sibships
with j affected members (j = 1,...,]) and 7, =
2]/:1 n

The authors’ motivation for considering the likelihood
(2) is that one would have difficulty constructing the
correct likelihood because of the inherent inability to
resolve all the latent stratification in the analysis. They
acknowledged that likelihood (2) was incorrect because
it did not properly account for the prevalence hetero-
geneity due to the effect of unobserved strata. We note
that, in fact, the main reason for likelihood (2) to fail
is that it assumes that the disease statuses of all subjects
in the ascertained subpopulation are independent. How-
ever, under the data-generating mechanism assumed by
the authors, D;,D,,...,D, are independent only when
conditioned on their sibship’s stratum membership and
therefore are marginally dependent. The likelihood (2)
does not account for the marginal dependence of these
observations in the pooled subpopulation.

We now illustrate our first point: that an analysis
based on the correct likelihood (which properly models
the ascertainment criterion and the dependent nature of
the data) leads to population-based estimates. Later, we
demonstrate our second point: that if the data cannot
be modeled properly, then ascertainment-adjusted pa-
rameter estimates do not reflect the true values in either
the ascertained subpopulation or the original popula-
tion. It actually is not difficult mathematically to replace
the incorrect likelihood (2) with one that correctly ac-
counts for the dependence among the disease status in-
dicators D, under the sampling frame assumed by the
authors. To allow for the dependence, we must account
for the stratum membership of the various sibships
within the likelihood. Let m, be the proportion of the
population that is in stratum k. Initially, we assume that
m,, is known for all k. Conditional on sibship 7 being in
stratum R, D,;,D,,,...,D, are independent and each fol-
lows a Bernoulli distribution with disease probability p,.
The unconditional likelihood for sibship i then has the
form

L(D;,D,,, ... aD,])
= > 1 L(D,,D,, ...
= ShimlpEru(t — pySien]

,D; | stratum,)

Am. ]. Hum. Genet. 70:886-895, 2002

The ascertainment-adjusted likelihood across all 72,4 as-
certained sibships is then

= (ZD 1) ¥

[1 ~ S - pk)’]
= k=1
Usmg the ascertainment- ad]usted likelihood (3), we can,
in principle, obtain estimates p,, p,, ..., px of the stra-
tum-specific prevalences p,, p,, ..., px and estimate the
overall disease prevalence by

K
13 = E Wklsk .
k=1

However, we show in the Appendix that the estimates
of p., ps, ..., px are only identifiable when the sibship
size | is strictly greater than the number of strata K.

A second issue for our ascertainment-adjusted likeli-
hood (3) is that we are assuming both the number of
strata K and the probabilities of stratum membership
15T s..., T are known. However, as stated by Burton et
al. (2000), these are typically unknown in genetic anal-
yses. In such cases, we might apply latent-class analysis
methods and mixture models (Roeder et al. 1999) to the
data to obtain valid estimates of the overall disease prev-
alence p. If marker genotype data are available for in-
dividuals within the original population, we could also
estimate K and = ,,m,,...,my, using the methods suggested
by Pritchard et al. (2000), and then estimate p by use
of the likelihood (3).

We use an example to contrast the results of the as-
certainment-adjusted likelihood (2) with the ascertain-
ment-adjusted likelihood (3). Burton et al. (2000) orig-
inally examined a simulated data set of » = 8,000
sibships, each of size | = 3, that were distributed into
one of K = 4 strata, each with its own stratum-specific
disease prevalence. Within stratum k, the authors sim-
ulated the disease status of a sibling using a Bernoulli
random variable with disease probability p,. After sim-
ulating the disease phenotypes within the sibships
(n = 8,000), the authors ascertained all 7,4, sibships
with one or more affected siblings.

Burton et al. (2000) estimated the overall disease prev-
alence p in the ascertained subpopulation using two dif-
ferent analyses. Using the likelihood (2), they estimated
p by use of Gibbs sampling procedures (Gelfand and
Smith 1990). They also estimated p by use of the
method-of-moments Li-Mantel (1968) estimator (see
Appendix). Like the ascertainment-adjusted likelihood
(2), the validity of the Li-Mantel estimator requires that
D;,, D,,, and D;; be independent and be identically dis-
tributed as Bernoulli random variables with disease
probability p. Application of the Li-Mantel method in
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this example fails because of the dependence among the
D,. It should be noted that if the D, are marginally
independent, the Gibbs sampling method and Li-Mantel
method used by Burton et al. (2000) would yield con-
sistent estimates of the population-based disease prev-
alence p, even when the population is composed of latent
subpopulations with heterogeneous disease prevalences.
In the Appendix, we show that this statement holds for
the Li-Mantel method.

Burton et al. (2000) found that estimates of disease
prevalence p, based on both Gibbs sampling and the Li-
Mantel estimator, more closely resembled the prevalence
in the ascertained subpopulation than that in the original
population. They then asserted that overall prevalence
estimates using these two methods reflect the overall dis-
ease prevalence in the ascertained subpopulation. We
interpret this to mean both estimates asymptotically con-
verge to the true prevalence in the ascertained subpop-
ulation. However, we show in the Appendix that the
Li-Mantel estimator does not converge to the true
prevalence in the ascertained subpopulation. To verify
our theoretical findings, we use the data in the example
of Burton et al. (2000) and apply equations (B1) and
(B2) in the Appendix. The theoretical overall prevalence
is 0.132 in the original population and 0.223 in the
ascertained subpopulation. Using equation (B3) in the
Appendix, we calculate that the asymptotic theoretical
value of the Li-Mantel estimator is 0.238. These values
are in nearly perfect agreement with those reported by
the authors. It should be noted that the difference be-
tween 0.238 and 0.223 is intrinsic and is not due to
sampling error in finite samples. Thus, the Li-Mantel
estimate that ignores the strata does not reflect the true
value in either the original population or the ascertained
subpopulation, which validates our second point.

We could not apply our ascertainment-adjusted likeli-
hood (3) to the ascertained data set of Burton et al. (2000),
since there are K = 4 strata and the sibship size is | =
3, which makes p,,p, ... ,p, unidentifiable. To assure iden-
tifiable prevalence estimates, we modified the example to
assume only K = 2 disease strata. We simulated a pop-
ulation of n = 10,000 sibships each of size ] = 3. Stra-
tum 1 contained 8,000 sibships of size 3 and had a sim-
ulated disease prevalence p, of 0.10. Stratum 2 contained
the remaining 2,000 sibships of size 3 and had a simulated
disease prevalence p, of 0.40. The population character-
istics are shown in table 1. The overall population prev-
alence is then p, = (0.10)(8,000/10,000) + (0.40) (2,000/
10,000) = 0.16.

To help in interpretation, we simulated the number of
sibships with zero, one, two, and three affected siblings
within each stratum to be the numbers expected. We then
ascertained all 7,5 = 3,736 sibships with at least one
affected sibling. The characteristics of the ascertained sub-
population are shown in table 2. The prevalence in the
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Table 1
Original Population Characteristics
No. oF
DISEASE

STRATUM  Sibships  Siblings  Affected Siblings ~PREVALENCE
1 8,000 24,000 2,400 .10
2 2,000 6,000 2,400 40

Total 10,000 30,000 4,800 .16

ascertained subpopulation is p, = (0.10)(2,168/3,736) +
(0.40) (1,568/3,736) = 0.226.

From table 2, the numbers of sibships with one af-
fected sibling (n,), two affected siblings (#,), and three
affected siblings (7;) across both strata are 2,808, 792,
and 136, respectively. Using these ascertained counts and
knowing m, = 4/5 and 7, = 1/5, we applied our ascer-
tainment-adjusted likelihood (3). Using a Fisher-scoring
estimation procedure, we obtained stratum-specific prev-
alence estimates of p, = 0.10 (SE = 0.020) and p, =
0.40 (SE = 0.008), consistent with the values of p, and
p, in the original population and not that in the ascer-
tained subpopulation. We then estimated the overall
prevalenceasp = 0.16 (SE = 0.017), which also reflects
the overall disease prevalence in the original population.
This validates our first point.

We then compared our results with those obtained by
means of the classical procedures used by Burton et al.
(2000), which did not use any information about the
dependent nature of the data and were therefore biased.
We applied a Fisher-scoring procedure using the likeli-
hood (2) and obtained a biased prevalence estimate of
0.241 (SE = 0.004). Likewise, when we applied the
authors’ Li-Mantel estimator, we obtained a biased prev-
alence estimate of 0.237 (SE = 0.006). Using (B3) in
the Appendix, we found that the asymptotic theoretical
value of the Li-Mantel estimator is 0.237. These esti-
mates do not reflect the overall disease prevalence in
either the ascertained subpopulation (p, = 0.226) or the
original population (p, = 0.16). These results are con-
sistent with our second point.

The results from this example support our two main
points. We can consistently estimate the overall disease
prevalence in the original population from the disease
statuses of the siblings in the ascertained subpopulation
if we can correctly model the dependent structure of the
data in the ascertainment-adjusted likelihood. If not, the
resulting estimates need not reflect the true parameter
values in either the original population or the ascertained
subpopulation. Not surprisingly, incorrect specification
of the likelihood, as in equation (2), can lead to biased
estimates of the disease prevalence. If a non-likelihood-
based approach, such as the method-of-moments Li-
Mantel estimator, is used, then it is important to make
sure the assumptions regarding the nature of the data
(such as independent observations) are valid.
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Table 2

Ascertainment Subpopulation Characteristics
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NoO. OF SIBSHIPS WITH

ToTAL NO. OF ASCERTAINED

STRATUM 1 Affected Sibling 2 Affected Siblings 3 Affected Siblings  Sibships  Siblings  Affected Siblings

1 1,944 216 8 2,168 6,504 2,400

2 864 576 128 1,568 4,704 2,400
Total 2,808 792 136 3,736 11,208 4,800

Example 2: Estimating Parameters in a Logistic
Variance-Component Model

In their second example, Burton et al. (2000) inves-
tigated the effect of ascertainment on parameter esti-
mates in a logistic variance components model. They
simulated the disease-status indicator D, as a Bernoulli
random variable with mean p,, using a logistic variance-
components model where n, = In[p,/(1 — p,;)] and
n; = o+ Bpz,p + Buzint C; (Breslow and Clayton
1993). In this model, o represents the overall intercept,
B, is the regression coefficient for a binary covariate z,,
By is the regression coefficient for a normally distributed
covariate z,, and C, is a random effect shared by all
members of the ith sibship. Fixed covariates were cen-
tered about their means, to have expected values of zero.
The random effect C; was assumed to follow a normal
distribution with mean of zero and variance oZ. After
simulating sibships under the logistic variance-compo-
nents model, the authors ascertained all sibships with at
least one affected member from the original population,
to form their ascertained subpopulation.

In the example, we focus on illustrating our first point:
that an ascertainment-adjusted analysis based on a prop-
erly constructed ascertainment-adjusted likelihood re-
turns population-based parameter estimates. To dem-
onstrate this, we first examined the ascertainment-ad-
justed likelihood that Burton et al. (2000) used for anal-
ysis. After viewing the computer code that Burton et al.
(2000) used, we determined that the authors constructed
their ascertainment-adjusted likelihood by dividing the
likelihood of the data by the probability of ascertainment
conditional on the random effects. They then integrated
the conditional ascertainment-adjusted likelihood over
the random effects C,. Specifically, their ascertainment-

adjusted likelihood had the form

o ¢ [1LD,1C)
| f ’}, flC)dC,
[ D=1 c)l
[H L(D,| C)
J fC)dC,, (4
[1-1iLo, =0lc)

where

Di/’ I C)
( ea+ﬁBzx/,B+BNZ1/,N+Cx

D; 1 1-D;
1+ ea+5BZx/,B+Bsz/,N+Cx 1+ eOf'*'BBZz,‘,B'*'ﬁNZi,,N*'Cz

and where f{C,) denotes the probability-density function
of the normally distributed random variable C,.

However, using the usual ascertainment-adjusted like-
lihood (1), we obtained the following ascertainment-ad-
justed likelihood for this example:

nssc 1(D;;,D,sy .. D)
i=1 L(ﬁ Di/ = 1)

i=1

oo, clrcdc

=11

[1—HL D, = 0| C)|fiC)d o

The correct ascertainment-adjusted likelihood (35) is dif-
ferent from (4). The likelihood (5) requires integrating
over the distribution of the random effects C, in the
numerator and denominator separately before taking
their ratio. In contrast, the likelihood (4) is misspecified
and conditions on both the ascertainment and the ran-
dom effects first, followed by integration over the dis-
tribution of the random effects. Results based on the
likelihood (5) are consistent with the suggestion by the
authors that a likelihood-based model can be con-
structed that returns population-based parameter esti-
mates (see below).

Burton et al. (2000) applied the ascertainment-adjusted
likelihood (4) to analyze a simulated data set. The authors
seta = —5,8;, = —0.4,8y = 0.3, and 62 = 4.5 in their
logistic variance-components model. They simulated sib-
ships with five members and then ascertained samples of
1,000 sibships, each with at least one affected member.
The authors correctly noted that this ascertainment cri-
terion selects sibships in which values of C; are primarily
in the upper tail of the normal distribution, so that the
features of the random effects C, in the ascertained sub-
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population are different from those in the original pop-
ulation. They also noted that, although the random effects
are still approximately normally distributed in the ascer-
tained subpopulation, the empirical mean and variance
of the C, were 2.76 and 2.42, respectively, in contrast to
0 and 4.5 in the original population. This affects the val-
ues of the grand mean («) and the variance parameter
(0) in the ascertained subpopulation. In the subpopula-
tion, the grand mean (a) is E[n,] = Elo+ B2, +
Bnzint Cl = =5 +2.76 = —2.24, whereas the vari-
ance parameter o is 2.42. So, although the true parameter
values of (o, 0) were (=35, 4.5) in the original population,
the authors expected (o, 2) to be closer to (—2.24,2.42)
in the ascertained subpopulation.

Burton et al. (2000) performed their ascertainment-ad-
justed analysis by applying the likelihood (4), using Gibbs
sampling procedures (Gelfand and Smith 1990; Zeger and
Karim 1991) in the software package WinBUGS (Spie-
gelhalter et al. 2000). The results of their analysis yielded
parameter estimates of & = —2.15 (SE = 0.11) and
oc = 1.98 (SE = 0.32) as reported in an erratum by
Burton et al. (2000). These estimates were closer to the
expected values (—2.24, 2.42) in the ascertained subpopu-
lation than those in the original population (-3, 4.5).
From these results, the authors argued that the ascertain-
ment-adjusted parameter estimates reflected the values of
the parameters in the ascertained subpopulation rather
than those in the original population. We suggest instead
that this conclusion results from the use of a misspecified
likelihood and does not represent the true nature of the
problem.

To study whether we can recover mean values of (a,
o2 ) in the original population by use of the ascertain-
ment-adjusted likelihood (5), we simulated 100 data sets
of 1,000 ascertained sibships, each of size 5, using the
same logistic variance-components model and same as-
certainment criterion as Burton et al. (2000). We ana-
lyzed the ascertained subpopulation by maximizing the
likelihood (5), which we evaluated using adaptive Gaus-
sian quadrature (Pinheiro and Bates 1995). To ensure a
high degree of accuracy, we used 20 quadrature points
in our analyses. We implemented these estimation pro-
cedures using the SAS version 8 procedure PROC
NLMIXED (SAS Institute). Our SAS code is available
upon request.

Our analyses yielded mean estimates of o and 62 of
—4.77 (SD = 0.74) and 4.21 (SD = 1.01), respectively,
over the 100 simulated data sets. These results are con-
sistent with the generating values of —5.0 and 4.5 in the
original population and are inconsistent with those of
—2.24 and 2.42 in the ascertained subpopulation. Ap-
pealing to asymptotics, we repeated the simulations with
100 data sets of 10,000 ascertained sibships of size five.
Analyses yielded even better mean estimates of o and
o2 of —4.95 (SD = 0.24) and 4.43 (SD = 0.33), re-
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spectively. Our results for this example support our first
point that, for a well-specified model, ascertainment-ad-
justed parameter estimates reflect the true values of the
parameters in the original population when the correct
ascertainment-adjusted likelihood is used.

Discussion

Given a well-defined ascertainment scheme, it has long
been assumed that ascertainment correction leads to pa-
rameter estimates that reflect parameter values in the
population. Burton et al. (2000) recently demonstrated
that, given unmodeled heterogeneity, the usual ascer-
tainment adjustment leads to parameter estimates that
do not reflect those in the original population. This con-
clusion is certainly true and is a useful warning to avoid
performing genetic analyses uncritically.

Burton et al. (2000) go on to state the important
finding that, given unmodeled heterogeneity, ascertain-
ment-adjusted parameter estimates reflect parameter
values in the ascertained subpopulation, and they sup-
port their claim with two examples. We demonstrate
instead that: (1) if the genetic mechanism and ascer-
tainment scheme can be appropriately modeled, the ge-
netic analysis should yield estimates consistent with the
parameter values in the original population; and (2) if
not, the estimates using the conventional method cannot
be expected to reflect the parameters in either the orig-
inal population or the ascertained subpopulation.

To support our argument, we revisited the two ex-
amples of Burton et al. (2000) and showed that, for these
examples, properly-specified analyses yield ascertain-
ment-adjusted parameter estimates that reflect parameter
values in the original population. As we have shown, the
key to recovering estimates that reflect parameter values
in the original population is correct specification of the
ascertainment-adjusted likelihood in the analysis. Incor-
rect specification of the ascertainment-adjusted likeli-
hood owing to, for example, use of the conventional
method, unknown model features, nonidentifiability of
the correct model, or uncertain ascertainment scheme,
can be expected to lead to parameter estimates that do
not reflect the true values in either the original population
or the ascertained subpopulation. Similar conclusions
likely hold for non-likelihood-based ascertainment-ad-
justed estimation procedures. We showed this clearly in
example 1, where we demonstrated that the conventional
Li-Mantel method in this context failed to consistently
estimate the true prevalence value in either the original
population or the ascertained subpopulation.

Although we did not prove that the ascertainment-
correction equation (1) works in general to obtain pop-
ulation-based parameter estimates, it is reasonable to
assume that it does in cases for which the correct as-
certainment-adjusted likelihood can be derived. We feel
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it is important to emphasize that proper construction
of the ascertainment-adjusted likelihood (1) is necessary
in order for the ascertainment-adjusted analysis to re-
turn valid population-based estimates. As Burton et al.
(2000) pointed out, circumstances exist in the analysis
of complex traits in which one will be unable to cor-
rectly model the true nature of the data by use of (1),
owing, perhaps, to the inability to resolve all the hidden

Am. ]. Hum. Genet. 70:886-895, 2002

genetic studies, we should seek, when possible, to apply
current statistical methods, such as those described by
Pritchard et al. (2000), and to develop new approaches,
such as mixture models, to identify hidden strata.

Acknowledgments

We thank Drs. Robert Elston and Jane Olson for their help-

data-influencing strata. In such cases, the resulting as-
certainment-adjusted parameter estimates cannot be ex-
pected to reflect the true values of the parameters in
either the original population or the ascertained sub-
population. To avoid this unpleasant predicament in

ful comments. We thank Dr. Paul Burton for generously pro-
viding us his WinBUGS computer code. This work was sup-
ported by National Institutes of Health grants T32 HG00040
(to M.P.E.), R29 CA76404 (to X.L.), and RO1 HG00376 (to
M.B.).

Appendix A

Identifiability of p, p,, ... ,p by Use of the Ascertainment-Adjusted Likelihood (3)

In this Appendix, we briefly describe why estimates of stratum-specific prevalences p,, ps,...,px by use of the
likelihood (3) are identifiable only when sibship size | is strictly greater than the number of strata K. To show this
holds, define the function

K . .
) k§_:1 k(1 — p) ™~
Pr) =

R,(pys ...

forj = 1,...,] — 1. We can rewrite the ascertainment-adjusted likelihood (3) as

J-1
"ASC*Z/:l n;

(ﬁl [R/(PUPZ: ,Pk)}n’) [1 - 2 R/(Pla[’z: e sPK)

=1

We can easily obtain maximum-likelihood estimates of lif (P1sPas-esPx) G = 1,...,] — 1) from equation (3), and,
from these estimates, determine maximum likelihood estimates of p,,p,,...,px. However, if K>] — 1, then
PisPas - P are clearly nonidentifiable. Therefore, we will only obtain identifiable estimates of p,,p., ... ,px when
the sibship size J is strictly greater than the number of strata K (] = K + 1).

Appendix B

The Li-Mantel (1968) Estimator of Disease Prevalence Assuming Complete Ascertainment

Assume we have a population consisting of 7 sibships, each of size three. Let #, denote the number of sibships
in the population with j affected siblings (j=0,.., 3) such that#n = n, + n, + n, + n,. As before, let D, denote the
affection status of the jth sibling in the ith sibship. Also, leta = n, + 21, + 37, denote the total number of affected
siblings in the population.

To estimate the overall disease prevalence p, we collect all sibships from the population that have at least one
affected sibling, to form the ascertained subpopulation. As defined earlier, we let n,5c = 1, + n, + n; denote the
total number of sibships in the ascertained subpopulation. Also, let 2,5 = 37,4 denote the total number of siblings
in the ascertained subpopulation and define a, as the number of affected siblings in the ascertained subpopulation.
Under our complete ascertainment model, a,sc = a. The Li-Mantel (1968) estimator of p then takes the form
Pim = (@nse — n)(musc — n,). If the values of p are the same for all subjects within the population, then p,,, is a
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consistent, but not unbiased, estimator of p that solves the estimating equation a,,c — 1, = P (m,5c — 7,) (Li and
Mantel 1968; Burton et al. 2000).

Li-Mantel Estimator Assuming Multiple Strata and Marginal Dependence of Siblings within a Sibship

Now, assume that the disease prevalence varies across strata within the original population. To be consistent
with the first example of Burton et al. (2000), assume that the original population contains K = 4 strata with
prevalences p,, p,, p;, and p,. Assume that the disease statuses of siblings are independent only when conditioned
on stratum membership (so the disease statuses of siblings are marginally dependent). Let 7, denote the proportion
of the original population found in stratum k. Also, let N¥ and N{¥. denote the number of sibships from stratum
k in the original population and ascertained subpopulation, respectively. By definition,

4
— E N®
k=1
and

4
— (k)
Nasc = kE Njsc -
—1

Therefore, the overall disease prevalences in the original population and the ascertained subpopulation, which we
denote as p, and p,, respectively, converge in probability to the following forms:

pp =t 2 D (B1)

and

4 4
Elpka(x?c 12 w1 — (1 — p)P°
pA = — —_ —

1
b
Masc é‘al m[1— (1 — Pk)]3

(B2)

Suppose we fail to detect strata and only observe the pooled ascertained sibship counts (1,, #,, and 7;). Burton
et al. (2000) stated that the Li-Mantel (1968) estimator p, ,, should reflect the disease prevalence in the ascertained
subpopulation p,, but not that in the original population p,. We show that the Li-Mantel estimate p,,, does not
consistently estimate p, or p,. To show this, we evaluate the marginal expectations E[a,sc|, E[m,s], and E[n,] by
conditioning on all possible strata. We obtain the following expected values:

Ela,s]= 2 E E[D,,] = 2 2 2 WkE[Dz/ | stratum k| =3n 2 T Pr = 3npp

i=1j=1 i=1j=1k=

4
Elmysd = 3Elnysd =31 2, m(1 = (1= )

4 4
] =nk2:1 3mp(1 —p)* = 3”}; el = pif
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Using these expected values, we have

4 4 4
Ela,sc — ) 3”k§l TP — 3n 121 mpe(1 — i kzl T Pr (2P, — i)
= 7 7 =
3n 3 m(l—(1- Pk)s)_ 3”}21 D (1 — Pk)z

k=1

b,y = B3
Pru Elm,gc —n) (B3)

7
3 m(2p, — D7)
K=1

By comparison of (B3) with the theoretical forms of p, and p, in (B1) and (B2), it is clear that, when the disease
statuses are marginally dependent and we fail to account for strata, the Li-Mantel estimate fails to consistently
estimate the overall disease prevalence in either the original population (p,) or the ascertained subpopulation (p,).
Olson and Cordell (2000) demonstrated a similar result in the analysis of sibling recurrence risk.

Li-Mantel Estimator Assuming Multiple Strata and Marginal Independence of Siblings in a Sibship

Now, let us assume that the disease statuses of siblings are marginally independent. We show in such a case that
the Li-Mantel estimator will consistently estimate the population prevalence p,, even when the population contains
strata with heterogeneous disease prevalences. As before, assume that the original population contains K = 4 strata

with prevalences p,, p,, 3, and p,. Let m, denote the proportion of the original population found in stratum k. It
can easily be shown that the population disease prevalence converges in probability to

4
pr = 2 T De -
k=1

Assuming marginal independence of siblings in a sibship, the expected values Ela,s], Elmasc], and E[n,] are
evaluated as

Ela,s = 3npy
Elm,s=3E[n,5d=3n[1 — (1 — pp)3]

Eln)=n3p,(1 —pp)] .
Using these expected values, we have

Elaysc — ) 3npy — 3np,(1 — PP)Z

pALM_) = pp -

Elmyse —n)  3nl — (1= pfl—3mpp(1 — pof

This shows that, in the presence of hidden stratification, the Li-Mantel estimator consistently estimates the population
prevalence when the disease statuses of siblings in a sibship are marginally independent. This might occur when
disease statuses of siblings are determined entirely by environmental factors that have no tendency to be excessively
shared by siblings.
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